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In this paper, numerical simulations are presented of the nonlinear critical-layer evolu-
tion of a forced gravity wave packet in a stratified shear flow. The wave packet, loca-
lized in the horizontal direction, is forced at the lower boundary of a two-dimensional
domain and propagates vertically towards the critical layer. The wave–mean-flow
interactions in the critical layer are investigated numerically and contrasted with the
results obtained using a spatially periodic monochromatic forcing. With the horizon-
tally localized forcing, the net absorption of the disturbance at the critical layer
continues for large time and the onset of the nonlinear breakdown is delayed compared
with the case of monochromatic forcing. There is an outward flux of momentum in
the horizontal direction so that the horizontal extent of the packet increases with
time. The extent to which this happens depends on a number of factors including
the amplitude and horizontal length of the forcing. It is also seen that the prolonged
absorption of the disturbance stabilizes the solution to the extent that it is always
convectively stable; the local Richardson number remains positive well into the
nonlinear regime. In this respect, our results for the localized forcing differ from
those in the case of monochromatic forcing where significant regions with negative
Richardson number appear.

1. Introduction
It has been recognized for many years that instability and wave motion in stratified

shear flows play an important role in atmospheric phenomena such as clear air
turbulence, stratospheric sudden warmings and the quasi-biennial oscillation. It is
also believed that in thermocline regions of the ocean the momentum and energy
exchanged between internal gravity waves and currents is considerable. The principal
parameter in the linear stability theory of stratified flows is the Richardson number
Ri, which is essentially the ratio of the stabilizing buoyancy effect to the destabilizing
effect of shear. In our numerical simulations, the initial mean flow Ri is everywhere
greater than 1/4, so the mean flow is stable according to the Miles–Howard theorem.
For small-amplitude gravity waves on a parallel shear flow ū(z), the second-order
Taylor–Goldstein amplitude equation results when the normal mode approach is
employed. This equation is singular at the height where ū(z) = c, the perturbation
phase speed. By expanding in power series around the critical point zc, Miles (1961)
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was able to determine expressions for the Reynolds stress on either side of the critical
point. These are, in general, different owing to discontinuities in the eigenfunctions
(i.e. the phase change of hydrodynamic stability theory).

Within the framework of linear theory, the phase change can be determined in
two different ways, each of which leads to the same result. The first way involves
introducing viscosity and heat conduction in a critical layer of thickness O(αRe)−1/3,
where α is the disturbance wavenumber and Re the Reynolds number. The second
method is to use transforms instead of normal modes to solve the initial-value problem
for the linearized vorticity equation. In general, a Fourier transform in x and a Laplace
transform in time are required, but only the Laplace transform is required to obtain
the phase change. This method was used by Booker & Bretherton (1967) in their
study of forced gravity waves propagating vertically towards a critical level. In both
cases, a phase change of −π is found. In the case of forced waves, the phase change
and the discontinuity in the solution imply that the waves are effectively absorbed by
the mean flow in the critical layer. The vertical flux of horizontal momentum, which
would have been independent of height in the absence of a critical level (Eliassen &
Palm 1961), is reduced across the critical layer by a factor of exp {−2π(Ric − 1/4)},
where Ric is the Richardson number at the critical level. As the time t → ∞, however,
the analysis breaks down in the critical layer. This is because both the horizontal
perturbation velocity and the density perturbation become infinite at the critical level
so that nonlinearity must be taken into account.

There has been some analytical work that extends the analysis of Booker &
Bretherton into the nonlinear regime. In the last of a series of three papers, Brown &
Stewartson (1982) found evidence of a weak transmitted wave in addition to a con-
siderably stronger reflected wave. They obtained improved asymptotic representations
of the linear solution and then used these to attack the nonlinear, time-dependent
critical-layer equations by means of an expansion in powers of a slow time variable
τ = αε2/3t , where α is the horizontal wavenumber and ε is the non-dimensional ampli-
tude of the perturbation. Insights were provided by this work concerning the detailed
interactions within the critical layer, but the analysis is limited to times τ � Ri1/6.

The aforementioned studies were all based on the assumption that the disturbance
is periodic in the horizontal direction. However, a more realistic representation of the
behaviour of gravity waves in the atmosphere or ocean can be obtained by employing
a forcing in the form of a horizontally localized wave packet with an amplitude that
varies slowly in space. A monochromatic periodic forcing can be justified only if the
wavelength of the disturbance is assumed to be of the order of magnitude of the
circumference of the earth. However, for a disturbance that is not on this scale,
there is no reason to assume periodicity. This is especially true for simulations of
orographically forced gravity waves since, in reality, a mountain range would be of
finite length only and would not be monochromatic.

The behaviour of a stratified fluid flowing over a horizontally localized obstacle
such as an isolated mountain has received a considerable amount of attention in
recent decades. The main motivation for many of these studies was to understand
the mechanism that leads to downslope windstorms. Observations show that the drag
force on an isolated obstacle is, in general, higher than that predicted by linear theory
and theoretical studies of the nonlinear dynamics of the flow in the vicinity of the
obstacle (e.g. Peltier & Clark 1979) show that this high-drag state is due to the deposi-
tion of momentum in the mean flow by lee waves breaking downstream. The
mechanism for the wave breaking was attributed to critical-layer interactions and, for
this reason, several workers (e.g. Clark & Peltier 1984; Bacmeister & Pierrehumbert
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1988) have investigated the effect of the presence of a critical layer in the flow. Clark &
Peltier examined the case in which the critical level is at a specific height above the
ground that allows resonance between the waves incident on it and the reflected
waves. They showed that the drag force exerted on the obstacle would depend on the
height of the critical level. This result was arrived at by assuming the flow to be linear
everywhere outside the critical layer and also that the critical layer would act as a
perfect reflector. However, Bacmeister & Pierrehumbert (1988) pointed out that there
was no justification for ruling out the possibility of critical-layer absorption; they
showed that, not only could there be absorption, but that the absorbing state could
even continue indefinitely. They calculated the vertical momentum flux and noted
that it was discontinuous across the critical layer, as shown by Booker & Bretherton
(1967) and other earlier workers. This discontinuity was balanced by a change in the
horizontal momentum flux across the region above the obstacle so that there was
zero net flux in the region above the forcing. Absorption of the incident waves was
prolonged, with the disturbance propagating horizontally within the critical layer.

It must be noted that the possibility of prolonged critical-layer absorption of a wave
packet was later suggested by Brunet & Haynes (1996) in the context of a Rossby
wave packet propagating horizontally towards a nonlinear critical layer, although
their numerical simulations showed net reflection of the packet at late time. Late-time
absorption of a forced Rossby wave packet was seen in the nonlinear critical-layer
study of Campbell (2003). Numerical simulations and an asymptotic analysis showed
that the extent of absorption, relative to reflection, depends on a number of factors,
including the length and amplitude of the packet at the source.

For the case of gravity wave packets, it would be of interest to see if the absorbing
state observed by Bacmeister & Pierrehumbert obtains in general or if it only occurs
in the particular configuration that was used in their study, i.e. a Gaussian forcing.
Although there are numerous analogies between the two problems (horizontally
propagating Rossby waves in a zonal shear flow and vertically propagating gravity
waves in a stratified flow), there is no reason to assume a priori that the conclusions
of Campbell (2003) can necessarily be extended to gravity wave packets. A separate
investigation of the nonlinear gravity wave packet critical layer is needed to determine
the factors that determine the late-time absorption/reflection behaviour of the critical
layer.

Another possibility is that there could be non-negligible transmission of wave
activity through the critical layer, as in the case examined by Javam & Redekopp
(1998). The gravity wave packet in their study was of finite length in the horizontal
direction and its amplitude took the form of a step-function; their forcing function,
however, differed from that employed here in the sense that it was localized in the
vertical direction as well as in the horizontal. Their numerical simulations showed
that if the wave packet was sufficiently compact, a significant portion of its energy
would be transmitted through the critical level.

In this paper, we examine the nonlinear critical layer for a horizontally localized
gravity wave packet, focusing on two main issues. The first is to determine which
of the different possibilities dominates in the critical layer at late time: absorption,
reflection or even perhaps transmission. In our simulations, we employ a periodic
forcing of wavenumber k whose amplitude is modulated in the horizontal x-direction
by a Gaussian factor exp(−µ2x2), where µ is a small parameter. Setting k = 0 would
correspond to an isolated mountain. The results of the simulations show that, even
at late time, absorption dominates over reflection and transmission. The horizontal
extent of the packet increases with time in the critical layer, which is in agreement
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with the observations of Bacmeister & Pierrehumbert for waves forced by flow over an
isolated obstacle. The extent to which this happens depends on the relative magnitude
of the two important parameters, µ which determines the length of the packet at
the source level and ε, the nonlinear parameter which measures the amplitude of the
forcing.

It will be seen here that, in the critical layer, the zero-wavenumber component of the
disturbance is several orders of magnitude larger than the contributions from higher
wavenumbers. To understand why this is so, we re-examine the analytic solution of
Booker & Bretherton (1967) and investigate the effect of adding the nonlinear terms
and the spatial localization of the forcing to their solution. From this, we can compare
the order of magnitude of the different components of the solution.

The second issue addressed here concerns the possibility of secondary instabilities
developing in the critical layer at late time. For linear disturbances, it is well-known
that instabilities can occur only if Ri < 1/4 somewhere in the flow (Howard 1961; Miles
1961) and this criterion is often extended and applied to time-dependent problems
as well. Negative values of Ri indicate unstable stratification and the possibility of
convective instabilities. The question of whether secondary instabilities in nonlinear
critical layers are the result of regions in which Ri < 0 or Ri < 1/4 has been the subject
of considerable debate during the past 20 years. Fritts (1982), Winters & D’Asaro
(1989) and Lin et al. (1993) addressed this issue in the context of disturbances that
are monochromatic in the horizontal direction but localized in the vertical direction.
Fritts found regions where Ri < 0, while Winters & D’Asaro found regions where
0 <Ri < 1/4. Lin et al. used high-resolution simulations to show that at late time
both convective and dynamical instabilities develop. In our simulations, we shall see
that, with a monochromatic forcing, regions in which Ri < 0 and 0 <Ri < 1/4 develop
eventually. However, when a horizontally localized forcing is employed, the local
Richardson number remains positive even at late time.

In the next section, the equations used in our study are described. The configuration
and choice of parameters used and the results of the numerical simulations are
discussed in § 3. In the simulations, a radiation condition is implemented at the upper
boundary of the computational domain; this is described in Appendix A. Further
insight into some of the features of the numerical solutions is obtained by examining
the approximate analytical solution to the governing equations. An outline of the
procedure used to derive the approximate solution is given in Appendix B. Some
concluding remarks are given in § 4.

2. The governing equations
We examine the evolution of an internal gravity wave packet propagating vertically

upwards in a stratified shear flow in a two-dimensional region defined by the coordi-
nates x and z in the horizontal and vertical directions, respectively. All the variables
and parameters are non-dimensionalized with respect to typical length scales Lx and
Lz in the x- and z-directions, a typical density scale, a typical velocity scale, U , and
the dimensional amplitude, ϕ, of the perturbation streamfunction at the source.

We make the Boussinesq approximation, i.e. take into account density variations
only in the terms in the governing equations involving buoyancy forces. The back-
ground density and velocity are denoted by ρ̄(z) and ū(z) and the perturbation stream-
function, vorticity and density by ψ(x, z, t), ζ (x, z, t) and ρ(x, z, t), respectively. The
streamfunction is defined in terms of the disturbance velocity (u, w) by u = −ψz and
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w = ψx . The governing equations for the evolution of the perturbation are

ζt + ūζx − ū′′ψx + g(ρ̄)−1ρx + ε(ψxζz − ψzζx) − Re−1∇2ζ + Re−1ε−1ū′′′ = 0, (2.1)

where

ζ = ∇2ψ (2.2)

and

ρt + ūρx + ρ̄ ′ψx + ε(ψxρz − ψzρx) − Re−1Pr−1∇2ρ − Re−1Pr−1ε−1ρ̄ ′′ = 0. (2.3)

Here, the primes denote differentiation with respect to z while the subscripts x and
z denote partial differentiation. The Laplacian operator is non-dimensional with the
x-derivative in the operator multiplied by a factor δ =L2

z/L
2
x , which is the square of

the aspect ratio. The parameter ε is defined as ϕ/(LzU ) and gives a measure of the
amplitude of the disturbance at the source. It is assumed that ε � 1. The constant g is
the acceleration due to gravity and Re and Pr are the Reynolds number and Prandtl
number, respectively; it is assumed that Re � 1 and Pr is set to 0.72, the value of the
Prandtl number for air. The last term in each of equations (2.1) and (2.3) must be
included because the mean density and velocity profiles used in our simulations do
not satisfy the equations with the viscous and heat conduction terms included.

In our numerical simulations, the disturbance is generated by a forcing applied at
the lower boundary z1 of the computational domain. Two types of forcing function
are used: a periodic forcing of the form eikx + c.c. and a horizontally localized forcing
of the form

ψ(x, µx, z1, t) = A(µx, t) eikx + c.c. (2.4)

In (2.4), µ is assumed to be a small parameter, so that the amplitude A of the forcing
varies slowly with x.

The question arises as to how we should define the ‘mean’ flow when the forcing
takes the form (2.4). In the case of the periodic forcing, the mean is taken to be an
average over a horizontal wavelength 2π/k. However, this definition cannot be used
in the horizontally localized case, where the disturbance varies slowly with x and
has a different amplitude over each wavelength interval. In the horizontally localized
case, the most appropriate definition of the ‘mean’ would be an average taken over
a length L equal to the non-dimensional length of the packet. The packet length,
however, increases with time, as we shall see in § 3, so L must be chosen to be of the
same order of magnitude as the non-dimensional length of the packet at the forced
boundary, but large enough that the packet is completely contained within an interval
of length L at all times. In the numerical simulations, L is chosen to be approximately
the length of the computational domain.

The horizontally localized perturbation may be expressed as a Fourier integral

ψ =

∫ ∞

−∞
ψ̂(κ, z, t) eiκx dκ, (2.5)

and the wave-induced mean flow then corresponds to the zero wavenumber term in
the integrand, i.e. the wave-induced mean streamfunction is

ψ̄0(z, t) =
ε

L

∫ ∞

−∞
ψ dx =

ε

L
ψ̂(0, z, t) (2.6)

and the wave-induced horizontal velocity is ū0(z, t) = −ψ̄0z. In a similar manner,
other quantities that would, in the periodic problem, be defined as averages over a
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wavelength, are evaluated instead by integrating over the length of the packet. For
example, the averaged vertical momentum flux is defined as

F = − 1

L

∫ ∞

−∞
ρ̄uw dx. (2.7)

In the wave-packet problem, taking an average over the length of the packet gives us
information about the zero wavenumber component of the disturbance only. However,
there is a continuous spectrum of wavenumbers and it is of interest to know how the
components of the disturbance corresponding to the different wavenumbers evolve
with time. For this reason, we shall also make use of the following decomposition
in which the part of the disturbance that depends directly on the fast scale x, i.e.
the periodic part of the disturbance, is separated from the slowly varying part. The
perturbation streamfunction is written as

ψ(x, z, t) = ψ0(µx, z, t) + εψ1(x, µx, z, t). (2.8)

The function ψ0 is a long wave comprised of contributions from wavenumbers κ

in a small neighbourhood of the zero wavenumber. It varies slowly with x, so we
may think of it as a function of µx, which does not depend explicitly on the fast x

scale. The function ψ1 is comprised of contributions from the higher wavenumbers. In
practice, such a decomposition is accomplished by dividing the range of integration
(−∞ <κ < ∞) of the Fourier integral (2.5) into subintervals and evaluating the integral
over each subinterval separately. Evaluating the integral over the low wavenumbers
gives ψ0, while evaluating it over higher wavenumbers gives ψ1. This is described in
more detail in § 3.2.

3. Numerical simulations
3.1. Configuration

The numerical simulations were carried out on a rectangular domain defined by
x1 � x � x2 and z1 � z � z2. The forcing was applied at the lower boundary, z1 = 0, and
was of the form

ψ = e−µ2x2

eikxf (t) + c.c., (3.1)

where

f (t) =

{
t/t1, t < t1,

1, t � t1,
(3.2)

with t1 constant and µ a small parameter. For comparison with earlier studies such
as Booker & Bretherton (1967), computations with monochromatic forcing (µ = 0)
were also carried out. With this forcing function, the amplitude of the disturbance at
z1 was increased with time from zero at t = 0 and then kept fixed after a certain time
t = t1. The reason for this slow ‘switch-on’ of the forcing was to prevent instabilities
from developing near the inflow boundary, which could occur if the time step used
in the numerical solution was not sufficiently small.

The initial velocity and density profiles were taken to be ū = tanh α0(z − zc) (shown
in figure 1) and ρ̄ = ρ0e

−z/h, respectively, where α0, ρ0, h and zc are non-dimensional
constants and zc, the location of the critical level, was set to 5. At the upper boundary
(z2 = 10), a radiation condition was applied to allow any waves transmitted beyond
the critical layer to propagate out of the computational domain on reaching the
boundary. This is described in Appendix A.
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Figure 1. Initial mean velocity profile used in the standard run: ū = tanhα0(z − zc) with
zc =5 and α0 = 1. This gives Ric = 2. In the large Ric experiment shown in figure 15, α0 is set
to 0.5. In all our simulations, the forcing is applied at the lower boundary where ū ≈ −1.

There were a number of restrictions on the choice of the various non-dimensional
parameters used in the simulations. In particular, they had to be chosen in such
a way that the disturbance would be able to propagate towards the critical layer
without amplification or attenuation. In the region near the forced boundary, the
disturbance is linear and steady and so normal mode expressions can be assumed for
the perturbation streamfunction and density. Writing ψ as φ(z) eik(x−ct) + c.c., with k

and c real, and a similar expression for ρ, we obtain the Taylor–Goldstein equation,

φzz +

(
N2

(ū − c)2
− ū′′

ū − c
− δk2

)
φ = 0, (3.3)

where N is the Brunt–Väisälä frequency, defined by

N 2 =
−g

ρ̄

∂ρ̄

∂z
. (3.4)

Near the forced boundary, the mean velocity is almost constant (ū ≈ −1 and ū′′ ≈ 0),
so the WKB method can be applied to this equation to determine the appropriate
range of values of the parameters. For this equation to have periodic solutions near
the forced boundary, we must have N 2 − δk2 > 0. The important parameter to measure
the relative importance of viscosity to nonlinearity in the critical layer is generally
denoted as λ. This is defined to be the cube of the ratio of the thickness of the critical
layer according to the viscous theory (Re−1/3) to that in the nonlinear theory (ε2/3)
(Maslowe 1972). In all our simulations, we set λ� 1.

Based on these restrictions, a set of parameters was chosen for a standard run
and the results were used for comparison with the results obtained by varying the
different parameters. We set ρ0 = 1.0, α0 = 1.0 and the density scale height h =4.9, so
that N2 = 2. The initial Richardson number is Ri =N 2/(ū′)2 = 2; its minimum value
occurs at the critical level zc and is denoted by Ric. With this configuration, Ric =2
and so the flow is stable everywhere, at least initially, according to the Miles–Howard
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theorem. We also set ε = 0.05, λ= 0.1, the square of the aspect ratio δ = 0.2 and
the wave-packet parameter µ = 0.2, with the forcing centred at wavenumber k =2.
With this choice of µ and k, the length of the packet at the forced boundary is
approximately 20 non-dimensional units and the wavelength is approximately π units,
so that there are several wave oscillations within the packet length. The horizontal
extent of the computational domain was chosen to be large enough to ensure that
the amplitude of the disturbance would decay to zero at the boundaries at all times;
in general, an interval within the range −30 � x � 30 was sufficient. The calculations
with monochromatic forcing were carried out with the same set of parameter values,
but over the interval 0 � x � 2π and with periodic boundary conditions.

Equations (2.1)–(2.3) were solved numerically by taking a Fourier transform in
the x-direction and then solving the transformed equations numerically, with the
nonlinear terms calculated using a pseudospectral method. The Fourier integrals
were evaluated using a trapezoidal approximation and a variation of the fractional
Fourier transform method (Bailey & Swarztrauber 1991, 1994). This method is a
generalization of the standard fast Fourier transform (FFT) algorithm that allows
greater flexibility in the choice of the computational domain in both physical and
wavenumber space. The application of the method to our problem is described in
Campbell (2000).

The derivatives in the vertical direction were approximated using fourth-order
compact finite differences. These methods have a number of advantages over other
methods of comparable accuracy: they give a better representation of short length
scales than traditional finite-difference schemes and for that reason are comparable
to spectral methods (see, for example, Lele 1992). The finite-difference mesh was non-
uniform with a very fine mesh in the critical-layer region, a coarser mesh in the region
above and intermediate spacing below. Derivatives on the non-uniform mesh were
evaluated by first calculating them on a uniform mesh and then transforming them
into derivatives on the non-uniform mesh. A description of the procedure is given
by Campbell & Maslowe (2001). The choice of ε = 0.05 gives a nonlinear critical-
layer thickness of ε2/3 ≈ 0.136 non-dimensional units. By experimenting with the mesh
spacing, reducing it until the computed solution was found to be independent of the
mesh size, it was found that a minimum of about 20 points was needed in the critical
layer to represent the evolution of the disturbance accurately. The time derivatives
were discretized using the second-order Adams–Bashforth method and the time-step
size was set to 0.02 non-dimensional units, a value small enough to ensure stability
of the computations.

3.2. The results of the standard run

Numerical simulations with the standard set of parameters (ε =0.05, λ= 0.1, µ = 0.2,
Ric = 2) were carried out over the time interval t = 0 to t = 100. The results are shown
in figures 2–11. Figures 2 and 3 show contour plots of the horizontal velocity
perturbation u(x, z, t) = −ψz at early time (t =10) and late time (t = 100) with the
two different types of forcing. In figures 2(a) and 3(a), it is seen that there is almost
complete absorption of the disturbance at the critical level at early time. The late-time
plots 2(b) and 3(b) show modifications of the contours below the critical layer; this is
because some reflection of the incident disturbance is taking place and the downward-
propagating reflected waves are superimposed on top of the incident waves. In
figure 2(b), the horizontal extent of the packet has increased considerably, both in the
outer region and in the critical layer; in these extended regions, the dominant modes
are clearly the low wavenumbers.
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Figure 2. Wave packet forcing: horizontal velocity perturbation as a function of x and z at
(a) t = 10 and (b) t = 100. Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric = 2. Contour levels range
from −2 to a maximum of 10 in the critical layer at t = 100. Regions where u > 0 are shaded.
At early time (a), there is almost complete net absorption of the disturbance at the critical
level (z =5). At late time (b), the contour pattern is modified below the critical level as a result
of reflections.

The simplest way to measure the extent of reflection or absorption of the disturbance
is to examine the behaviour of the vertical momentum flux (2.7) in the vicinity of
the critical layer. This was seen to be discontinuous across the critical layer, almost
constant (negative) below and zero above. At each time step, the jump [F ] across
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Figure 3. Monochromatic forcing: horizontal velocity perturbation as a function of x and z
at (a) t = 10 and (b) t = 100. Parameters: ε = 0.05, λ= 0.1, Ric = 2. Contour levels range from
−2 to a maximum of 10 in the critical layer at t =100. Regions where u > 0 are shaded. At
early time (a), there is almost complete net absorption of the disturbance at the critical level
(z = 5). At late time (b), the contour pattern is modified below the critical level as a result of
reflections.

the critical layer was calculated, normalized by the maximum value [F ]max that it
attained and the result plotted as a function of time. This is shown in figure 4 for both
types of forcing. When ε is set to zero for the duration of the calculation, the jump
increases initially during the switch-on time, but eventually attains a steady state. This
is shown by the thin solid line and the dotted line for the wave-packet forcing and the
monochromatic forcing, respectively. In the nonlinear simulations (shown by the thick
solid line for the wave-packet forcing and by the dashed line for the monochromatic
forcing), the early-time evolution of [F ] is as in the linear case; however, no steady
state is attained and the nonlinear effects soon become evident as [F ] starts to
decrease rapidly. According to the nonlinear (inviscid) critical-layer theory of Brown &
Stewartson (1982), we would expect the nonlinear regime to start around the time
that t ∼ O(ε−2/3). With our choice of ε = 0.05, this would be as early as t = 7; however,
with the inclusion of viscosity, it could be expected that it would be delayed slightly.
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Figure 4. Variation of the jump in the (normalized) momentum flux with t . Comparison of
results obtained with wave packet forcing (µ= 0.2) and monochromatic forcing (µ= 0). The
thick solid line shows the results obtained with the wave packet forcing (µ= 0.2), the dashed
line with monochromatic forcing (µ= 0). Parameters: ε = 0.05, λ= 0.1, Ric = 2. For the wave
packet forcing, the corresponding curve obtained with ε = 0 is shown by the thin solid line;
for the monochromatic forcing, it is shown by the dotted line. The level [F ]/[F ]max = 0 has
also been indicated with a dotted line.

With both types of forcing, the nonlinear effects are first seen at around t = 14 when
the linear curves no longer coincide exactly with the corresponding nonlinear curves.
From that point on, the difference in the evolution of the momentum flux between
the periodic and the wave-packet results becomes apparent. In the periodic problem,
the jump drops rapidly to zero and to negative values, indicating first reflection and
then over-reflection of the waves, and then continues to oscillate between these states.
In contrast, with the wave packet forcing, although the jump in the momentum flux
decreases, it remains positive all the way up to the end of the simulation. This means
that, although there is some reflection, the extent of absorption is much larger and
there is net absorption of momentum flux into the critical layer.

For the wave-packet forcing, the vertical momentum flux has been plotted in
figure 5(a) as a function of z at time t = 100. This corresponds to the end of the
simulation indicated by the thick solid line in figure 4. Also shown is the wave-
induced mean velocity ū0 at that same time (figure 5b). The corresponding quantities
evaluated at early time (t = 10) are shown by the dashed lines. The positive jump
in the momentum flux across the critical layer means that a positive drag force
is exerted on the mean flow and the mean velocity is accelerated, i.e. the mean
velocity distortion ū0, defined below (2.6), is positive. With the wave packet forcing,
the mean velocity continues to be accelerated in the critical layer at late time, in
contrast to the monochromatic case where it alternates between periods of acceleration
and deceleration. Away from the critical layer where the momentum flux is almost
independent of height, ū0 is close to zero.

The net absorption of the disturbance continues at late time because the horizontal
extent of the disturbance increases with time. The increased extent of the disturbance
is due mainly to the contribution from the neighbourhood of the zero wavenumber;
this is seen in figure 2(b) by the absence of horizontal oscillations everywhere except
in the central region, −5 <x < 5, between the forcing and the critical level. The extent
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Figure 5. Wave packet forcing: variation with z of (a) the mean vertical momentum flux
F (z, t) and (b) the wave-induced mean velocity ū0(z, t). Parameters: ε = 0.05, λ=0.1, µ= 0.2,
Ric = 2. The dashed lines show results obtained at t = 10, the same time as in figure 2(a); the
solid lines show results obtained at t = 100, the same time as in figure 2(b).

to which the zero wavenumber contribution dominates the contributions from the
forced wavenumber and the higher harmonics in the critical layer is seen more clearly
in figure 6. The Fourier spectra of the streamfunction and the density at zc are shown
as functions of wavenumber κ . The Fourier transform of each quantity is denoted
by a hat. The increased horizontal extent of the packet is seen in figure 6(b) by the
narrowing of the peaks at κ = 0 and κ = ±2 compared with their width during the
linear regime.

To investigate this further, we examined the part of the disturbance arising from
the wavenumbers in the immediate vicinity of the zero wavenumber. This is the term
ψ0(µx, z, t), defined in equation (2.8). The corresponding quantity for the velocity
shall be denoted as u0(µx, z, t). To evaluate these, we calculated the inverse Fourier
transforms of ψ̂(κ, z, t) and −ψ̂z(κ, z, t), restricting the computations to wavenumbers
in the neighbourhood of κ = 0, i.e. wavenumbers in the interval |κ | < 1. The quantity
u0(µx, z, t) evaluated at the critical level at time t =100 is shown in figure 7 as a
function of x. The wave-induced mean velocity ū0(z, t) at that level would be the
x-average of u0(µx, z, t) over the length of the computational domain. For fixed x,
u0 plotted as a function of z takes a similar form to the mean quantity ū0 which is
shown in figure 5(b), i.e. it is close to zero away from the critical layer, positive in
the critical layer, attains its maximum near the critical level and this maximum grows
larger with time.

In a similar manner, we can calculate the component of the disturbance correspond-
ing to the higher wavenumbers, as defined in (2.8). We shall go further than (2.8) and
decompose the disturbance into three parts, by evaluating the Fourier integral (2.5)
over three subintervals: the range of low wavenumbers, the range of wavenumbers
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Figure 6. Wave packet forcing: Fourier spectrum of (a) the perturbation streamfunction at the
critical layer (b) the perturbation density at the critical layer at t = 10 (dashed lines) and t = 100
(solid lines). Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric = 2. At early time (the dashed lines),
most of the contribution to the disturbance comes from wavenumbers in the neighbourhood
of the forced wavenumber (κ = ±2). At late time (the solid lines),the contribution from the
zero wavenumber becomes large, higher harmonics develop and the peaks at κ = ±2 become
smaller.

in the vicinity of the forced wavenumber and the range of higher wavenumbers. In
figure 8, these three components of the streamfunction are shown: in (a), the function
ψ0(µx, z, t); in (b), the part of the disturbance centred at the forced wavenumber
(|κ | =2), calculated by inverting the transform over the interval 1< |κ | < 3 and, in
(c), the part arising from the higher wavenumbers, i.e. |κ | > 3. All three quantities are
evaluated at the critical level. In each graph, the corresponding quantity at early time
(t = 10) is shown by the dashed line. It is clear from these graphs that the horizontal
extent of the region in which the packet interacts with the basic flow increases in
length with time. However, while the zero wavenumber component increases greatly in
magnitude, the amplitude of the contribution from the forced wavenumber is actually
smaller at late time than at early time.

Campbell (2003) examined the problem of a Rossby wave packet propagating on
a horizontal plane. It was found there that the net absorption of the disturbance was
prolonged owing to an increase in the longitudinal extent of the packet; however, there
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Figure 7. Wave packet forcing: variation of u0(x, z, t) with x at the critical level and at t = 10
(dashed line) and t =100 (solid line). Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric = 2. u0(x, z, t)
is the component of the disturbance arising from wavenumbers in the vicinity of the zero
wavenumber. At early time t = 10, u0 is approximately proportional to exp {−2µ2x2}. By
t = 100, it has increased by several orders of magnitude and is asymmetric in x.

was a different mechanism for this. The increased length of the packet in that problem
was mainly due to a contribution from the wavenumbers in the neighbourhood of
the forced wavenumber rather than the zero wavenumber. An explanation for this
difference can be provided by examining the leading-order analytic solution to each
of the two problems. In the gravity wave packet problem, the magnitude of the
leading-order component of the term corresponding to the forced wavenumber |ψ1|
varies like |z − zc|1/2 as z → zc, according to the early-time solution (B 9). However, the
wave-induced mean flow increases like t in the outer region, as noted in Appendix B.

Now the nonlinear critical layer for gravity waves has been shown to have a
thickness of ε2/3 (Maslowe 1972) and the time scale for the nonlinear terms to
increase to the same order of magnitude as the linear terms is t ∼ O(ε−2/3) (Brown &
Stewartson 1982). In this space–time regime (|z − zc| ∼ O(ε2/3) and t ∼ O(ε−2/3)), it
follows that ψ0 ∼ ε2t ∼ O(ε4/3) and εψ1 ∼ ε|z − zc|1/2 ∼ O(ε4/3), so the two components
are of the same order of magnitude. With a monochromatic forcing, the mean flow
term does not continue to increase with time after t ∼ O(ε−2/3); it oscillates between
periods of growth and decay and thus, in the long time mean, it remains of the
same order of magnitude as the periodic part of the disturbance. However, with the
spatially localized forcing, since the momentum flux jump remains positive, the mean
flow term continues to grow with time even after the onset of the nonlinear time
regime and it would be expected to dominate for large t .

In contrast, in the Rossby wave packet problem, the critical-layer thickness is ε1/2

and the nonlinear time regime starts when t ∼ O(ε−1/2) (Warn & Warn 1978). At the
boundary of the critical layer, the component of the disturbance corresponding to the
forced wavenumber is O(1). The zero wavenumber term also increases like t . Thus,
in the regime where |y| ∼ O(ε1/2) and t ∼ O(ε−1/2), εψ1 is O(ε) and ψ0 ∼ ε2t ∼ O(ε3/2).
So, in contrast to the gravity wave packet problem, the contribution from the forced
wavenumber continues to dominate the zero wavenumber term even in the nonlinear
time regime and it will continue to do so at least until such time as t ∼ O(ε−1). This
is seen in figure 5 of Campbell (2003).
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Figure 8. Wave packet forcing: perturbation streamfunction at the critical level (z =0) at
t =10 (dashed lines) and t = 100 (solid lines) decomposed into the part centred (a) at the zero
wavenumber, (b) at the forced wavenumber and (c) the contribution from the higher harmonics.
Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric = 2. All three components of the disturbance increase
in horizontal extent at late time. The component ψ1 due to the forced wavenumber, shown in
(b), decreases in magnitude with time, while the other two components increase.

Another important point to note from figures 7 and 8 is that, at early time, ū0

and ψ̄0 (the dashed lines) are approximately proportional to exp(−2µ2x2), as noted
in Appendix B. At late time, the outward propagation of the disturbance is primarily
in the direction of positive x. One of the conclusions of the asymptotic analysis in
Appendix B is the presence of terms proportional to exp(−µ2(x − ū(z)t)2) and
exp(−µ2(x − ū(z1)t)

2). These describe wave packets propagating horizontally with
phase speeds of ū(z) and ū(z1), respectively. The disturbances with phase speeds ū(z)
would of course be stationary at the critical level, but those with phase speed ū(z1)
propagate in the direction of negative x at all levels. Since these disturbances are
superimposed upon disturbances with amplitudes of exp(−µ2x2) and exp(−2µ2x2),
the result is that the overall disturbance is asymmetric in x at late time.
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Figure 9. Wave packet forcing: total vorticity ξtotal = ψ̄zz + ε∇2ψ in the critical layer at
(a) t = 10 and (b) t = 100. Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric =2. The dark grey shading
indicates regions where ξtotal < −1, the light grey shading regions where −1 <ξtotal < −0.8 and
ξtotal > −0.8 elsewhere. At early time (a), closed contours or cat’s eyes are seen in the vicinity
of the critical level. These features become deformed at late time (b) as the vorticity contours
overturn.

The two contour plots in figure 9 show the total vorticity ψ̄zz + ε∇2ψ at early
and late times. At early time, the vorticity contours show the characteristic cat’s eye
structures observed in problems of this type. Since the forcing is localized in the
horizontal direction, there is a train of cat’s eyes whose size decreases away from the
centre of the packet. The breakdown of the cat’s eyes at late time is seen in figure 9(b).
In the next two figures, density contours at early and late times have been shown for
both types of forcing. Note that with the wave packet forcing, there are no actual
density overturns even at late time (figure 10b), although there is evidence of these in
the corresponding plot for the periodic case (figure 11b).

To investigate the instabilities resulting from the changes in density, we examine
the evolution of the local Richardson number in the critical layer. This is based on
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Figure 10. Wave packet forcing: total density ρtotal = ρ̄ + ερ in the critical layer at (a) t = 10
and (b) t = 100. Parameters: ε = 0.05, λ= 0.1, µ= 0.2, Ric = 2. Contour levels range from
ρtotal ≈ 0.48 at the bottom of each plot in equally spaced intervals to ρtotal ≈ 0.3 at the top.

the velocity and density profiles taking the perturbation into account:

Ri =
−g(∂(ρ̄ + ερ)/∂z)

ρ̄(∂(ū + εu)/∂z)2
. (3.5)

Filled contours of the local Richardson number at levels Ri =0, 1/4 have been added
to the density contours in figure 11(b). The dark grey shading represents the regions
where Ri < 0, the light grey shading the regions where 0 <Ri < 1/4 and everywhere
else Ri > 1/4. There are significant regions where the Richardson number is negative
and the Ri =0 contours are quite close to the Ri= 1/4 contours. In contrast, with
the wave packet forcing, the Richardson number never goes below zero and there are
only a few extremely small regions where it does go below 1/4, so there is nothing to
add to figure 10(b).

3.3. The effect of varying µ, ε and Ric

To examine the effect of varying the horizontal length of the forcing, the experiments
described in the previous section were repeated with µ = 0.1, 0.4 and 0.8, while
keeping the other parameters fixed at their standard values, ε = 0.05, λ=0.1 and
Ric = 2. In the absence of the nonlinear terms, the thickness of the critical layer would
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Figure 11. Monochromatic forcing: total density ρtotal = ρ̄+ερ in the critical layer at (a) t = 10
and (b) t = 100. Parameters: ε = 0.05, λ= 0.1, Ric = 2. Contour levels range from ρtotal ≈ 0.48
at the bottom of each plot in equally spaced intervals to ρtotal ≈ 0.3 at the top. In (b), the
local Richardson number is shown by the shaded regions: Ri< 0 in the dark grey regions,
0 <Ri< 1/4 in the light grey regions and Ri> 1/4 elsewhere. Note overturning of the density
contours at late time (b).

be determined by the length scale of the packet. The linear wave packet critical-
layer thickness would be µ (see Appendix B). When both wave packet and nonlinear
terms are present, as in our simulations, their relative importance then depends on
the magnitude of the ratio Λ = µ/ε2/3 of the wave packet critical-layer thickness
to the nonlinear critical-layer thickness. With the values of µ used in this series
of experiments, the ratio Λ would be changed from its value in the standard run
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Figure 12. Wave packet forcing: perturbation streamfunction ψ at the forced boundary for
different values of µ. The µ= 0.2 curve is that used in the standard run. The time evolution
of the jump in the momentum flux for each of these values of µ is shown in figure 13.
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Figure 13. Effect of varying the horizontal length of the forcing: variation of the jump in the
(normalized) momentum flux with t for different values of µ for fixed ε. Parameters: ε = 0.02,
λ= 0.1, µ= 0.1, 0.2, 0.4, 0.8, Ric = 2. The µ= 0.2 curve shows the results of the standard run.
Increasing µ gives a larger jump, i.e. increased net absorption. The curve labelled with an
asterisk was obtained using a horizontally localized forcing with an x-independent amplitude.

by factors of 1/2, 2 and 4, respectively. The form of the forcing for each value of
µ is shown in figure 12. For the simulations with µ = 0.1, a longer computational
domain (−30 � x � 30) was used. For each µ, the normalized momentum flux jump
[F ]/[F ]max was calculated and plotted as a function of time. These graphs are shown
in figure 13. It is evident that the magnitude of [F ] relative to [F ]max (the maximum
value it attains during the linear stage of evolution) depends directly on the value
of µ. For small µ, [F ]/[F ]max decreases at late time and eventually attains a steady
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state. However, in contrast to the monochromatic case, it never actually decreases to
zero and absorption continues to dominate. With large µ, [F ]/[F ]max, after an initial
decrease at the end of the linear regime, starts to increase at late time and by the
end of the simulation it has exceeded its linear value of 1. The reason that this is
possible is that the horizontal extent of the packet in the critical layer has increased
considerably at this time.

With our configuration, even when the length of the packet at the forced boundary
is small (large µ), there is hardly any transmission of wave activity through the critical
layer. This is in contrast to the case investigated by Javam & Redekopp (1998) in
which the forcing is limited to a finite horizontal region, but with an amplitude
independent of x in this region. They found that a packet of this form would be
reflected or transmitted through the critical layer rather than being absorbed.

In their study, the disturbance is generated by means of a forcing term added to the
governing equations for the velocity and the forcing is localized in height as well as in
x, so their configuration is quite different from ours. Also their disturbance propagates
downwards, rather than upwards, and the phase speed of their forcing is non-zero.
In spite of these differences, we decided that it would be worth carrying out some
simulations with a forcing function that is similar to theirs, i.e. with an x-independent
amplitude. By doing that, we could rule out the possibility that the shape of the
amplitude function affects the amount of transmission and that our results only hold
when the amplitude function is Gaussian. Re-written in our notation, their forcing
function is proportional to

exp(ik(x − ct)) exp(−β|z − z2|3)f (x) + c.c., (3.6)

where

f (x) =

{
1, |x| � Mπ/2k,

0, |x| > Mπ/2k.
(3.7)

The parameter M measures the horizontal extent of the forcing region in units of
half-wavelengths and is assumed to be an odd number. The forcing is centred above
the critical layer at a level which we have denoted as z2 here, and β determines its
vertical extent. The packet propagates downwards with a phase speed of c = 1. In
our notation, the initial mean velocity profile used by Javam & Redekopp would be
written as ū= 1 − tanh α0(z − zc), where α0 is a constant.

We carried out a series of experiments with this type of forcing, but using our
configuration in which ū= tanh α0(z − zc), c = 0, the forcing is applied at the lower
boundary and the disturbance propagates upwards. The parameter β in (3.6) was
set to zero. The parameter M was set to 9 to give a forcing region of just over 14
horizontal units, with k set to 2. All other parameters were chosen to be the same
as those used in our standard run (ε = 0.05, λ=0.1, Ric = 2). As in our previous
simulations, the packet was absorbed at the critical level at early time and at late time
there was some reflection, though very little transmission. There was a discontinuity
in the vertical momentum flux across the critical layer and its evolution with time is
shown in figure 13, compared with the 4 curves obtained with the Gaussian forcing.
This last experiment was repeated with smaller values of M , making the packet more
compact, as done in Javam & Redekopp’s simulations, but absorption was still found
to dominate transmission and reflection. We can conclude from these experiments
that there is no qualitative difference between the results obtained with the two types
of localized forcing; assuming a constant amplitude within the localized region, rather
than a slowly varying Gaussian amplitude, does not have a significant effect on the
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Figure 14. Effect of varying the amplitude of the forcing: variation of the jump in the
(normalized) momentum flux with t for different values of the nonlinear parameter ε for fixed
µ. Parameters: µ= 0.2, λ= 0.1, ε = 0.017, 0.05, 0.14, Ric = 2. The ε = 0.05 curve shows the
results of the standard run. Reducing ε gives a larger jump, i.e. increased net absorption.

results. So the difference in the amount of transmission between our results and those
of Javam & Redekopp is due not to the difference in the forcing amplitude function,
but rather to the more fundamental differences in the configuration mentioned in the
preceding paragraph, e.g. the vertical localization of their forcing.

In our next set of experiments, the amplitude of the forcing ε was varied while µ

was kept fixed at a value of 0.2 and all the other parameters were also kept at their
standard values. To change the ratio Λ by a factor of 1/2 while keeping µ constant,
ε must be changed by a factor of 23/2 or approximately 2.8. Results obtained using
ε = 0.017, 0.05 and 0.14 are shown in figure 14. With small ε, there is much greater
net absorption and so there is no decrease in the jump in the momentum flux from its
linear value. The jump attains a quasi-steady state with small-amplitude oscillations in
time. For large ε, we would expect an earlier onset of the nonlinear regime (Brown &
Stewartson 1982) and would also expect the nonlinear effects to dominate over the
wave packet effects and, consequently, that the results would more closely resemble
those in the monochromatic case. These predictions are confirmed by the ε = 0.14
curve in figure 14. The decrease in the momentum flux jump occurs earlier than in
the ε = 0.05 run and the net absorption of the packet is greatly reduced, although the
jump still remains positive.

Experiments with larger forcing amplitudes (up to ε =0.5) were also carried out.
These were the only cases in which there was a non-negligible amount of wave activity
transmitted beyond the critical layer. With large ε, the amplitude of the disturbance
at the critical layer grows large, because the zero-wavenumber component grows with
time (see Appendix B), and at large time it can even be of the same order of magnitude
as the amplitude of the forcing. Consequently, the magnitude of the disturbance
beyond the critical layer also becomes O(1). Eventually, the linear radiation condition
fails and the part of the disturbance that is transmitted beyond the critical layer
reaches the upper boundary and is reflected. The interactions between the waves
reflected at the upper boundary and the upward-propagating transmitted waves very
soon lead to numerical instabilities. To prevent this problem, a radiation condition
taking into account nonlinearities would be required.



172 L. J. Campbell and S. A. Maslowe

0

0
t

0.5

1.0

1.5

20 40 60 80 100

Ric= 8

2

[F ]

[F ]ma x

Figure 15. Effect of varying the initial Richardson number Ric: variation of the jump in the
(normalized) momentum flux with t for different values of Ric for fixed µ and ε. Parameters:
µ= 0.2, λ= 0.1, ε =0.05, Ric = 2, 8. The Ric =2 curve shows the results of the standard run.
To obtain the Ric = 8 curve, the background shear is reduced by a factor of 2. Increasing Ric
gives a larger jump, i.e. increased net absorption, as predicted by Booker & Bretherton’s linear
solution.

Finally, we investigated the effect of varying the local Richardson number. The
shear of the mean flow was decreased by a factor of 2 to give Ric = 8. According to
the linear solution of Booker & Bretherton (1967), the magnitude of the discontinuity
in the vertical momentum flux increases with increasing Ric. This was seen to be the
case in our nonlinear simulations as well; larger values of Ric result in greater net
absorption at late time, as shown in figure 15.

4. Conclusions
In this paper, the effect of a wave packet forcing on a nonlinear gravity wave critical

layer has been investigated. It was seen that the spatial localization reduces reflection
to the extent that absorption dominates and the jump in the total vertical momentum
flux does not go to zero even at large time. This is because the zero-wavenumber
component of the disturbance and the contributions from the wavenumbers in the
immediate vicinity of the zero wavenumber increase in magnitude and horizontal
extent with time. This outward flux of wave activity in the horizontal direction and
the prolonged absorption of the disturbance are similar to what was observed in
Bacmeister & Pierrehumbert’s (1988) study of waves forced by flow over an isolated
mountain. It must be noted, however, that the problem they studied differs from ours
in several ways. In the mountain wave configuration, the coordinates follow the shape
of the mountain, a drag force is exerted on the mountain by the flow and there
is a jump in the flow characteristics across the length of the mountain (analogous
to the ‘hydraulic jump’ in the theory of hydrostatic flow described, for example, by
Baines 1995). Waves are generated on the lee-side of the mountain and propagate
downstream. In our study, the prescribed lower boundary condition forces a distur-
bance which propagates vertically upward and the concept of a hydraulic jump does
not apply. Considering these differences, the similarity between our results and theirs
is noteworthy.

Our numerical simulations show that the extent of absorption relative to reflection
depends on the amplitude and horizontal length of the forcing, as well as on the
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strength of the mean shear in the vicinity of the critical layer. Results obtained with
a constant-amplitude localized forcing were qualitatively the same as those obtained
using a forcing function with a slowly varying Gaussian amplitude. For a given
shape of amplitude function, decreasing the horizontal length of the packet at the
source level had the effect of increasing the net absorption of the packet at the criti-
cal layer. Increasing the amplitude of the forcing had the effect of reducing the
extent of absorption relative to reflection, while increasing the Richardson number
by decreasing the mean shear caused greater net absorption. None of our simulations
resulted in a significant degree of transmission of the disturbance through the critical
layer; the horizontally averaged vertical momentum flux was in all cases approximately
zero above the critical layer.

It was also noted that the local Richardson number did not at any time become
negative anywhere in the flow domain and, although there were some regions in which
0 < Ri< 1/4, these were negligibly small. In contrast, in the case of monochromatic
forcing, substantial regions with 0 <Ri < 1/4 and Ri < 0 appeared at large time and
there was evidence of overturns in the density contours.

The evolution of the gravity wave packet critical layer may be compared with
that in the case examined by Campbell (2003) of a Rossby wave packet propagating
southwards in a horizontal plane. In that problem, the longitudinal extent of the
disturbance was seen to increase with time both in the critical layer and in the outer
region. The numerical experiments carried out here revealed that the distortion of
the mean flow is much larger relative to the magnitude of the perturbation in the
gravity wave problem than in the Rossby wave problem. A consequence of this is
that the nature of the interaction between the packet and the mean flow differs in
the two problems. In the gravity wave packet case, we have seen that the part of the
disturbance that spreads out is centred at the zero wavenumber; in the case of
the Rossby wave packet, on the other hand, there is a greater contribution from
higher wavenumbers in the neighbourhood of the wavenumber of the forcing. A
comparison of the different components of the disturbance in each problem was
carried out by examining the leading-order terms in the respective analytic solutions.
These approximate solutions give us a general idea of how the disturbance evolves
with time.

There are a number of questions arising from the results of the numerical simula-
tions which could be answered by a complete asymptotic analysis of the late-time
nonlinear gravity wave packet critical layer, along the lines of that carried out by
Brown & Stewartson (1982), but including the effects of the wave packet forcing.
An outline of the procedure is given in Appendix B. Important points to address
include the x-dependence of the disturbance in the inner and outer regions and the
mechanism by which the disturbance increases in horizontal extent with time.

A number of other possibilities would arise from extending the model used in our
simulations to take into account variations in all three dimensions. For the case of
orographically-forced waves, Shutts (1995, 1998) points out that, while the assumption
of two-dimensionality may be justified for flow over a long mountain ridge, it is
important to include a third dimension for flow over an isolated mountain, since the
disturbance would then be comprised of contributions from all angles.

In a nonlinear problem such as that studied here, even if the disturbance is two-
dimensional initially, there is the possibility of the development of three-dimensional
instabilities. Using the results of their two-dimensional nonlinear numerical simula-
tions, Lin et al. (1993) noted that the most unstable mode would be a spanwise
instability (out of the plane of the shear), thus confirming the importance of including
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three-dimensional dynamics in representing the critical-layer breakdown. Winters &
D’Asaro (1994) carried out nonlinear three-dimensional numerical simulations for the
case of a vertically localized and initially two-dimensional gravity wave packet and
contrasted their results with those obtained in a two-dimensional configuration. They
found that the early-time evolution of the critical layer was similar to that in the
two-dimensional case, but at late time, transverse convective instabilities developed. In
these investigations, however, the disturbance was monochromatic in the horizontal
direction. It would be of interest to examine the three-dimensional evolution of a
horizontally localized packet such as that employed in the present paper.

The authors are grateful to Dr G. Brunet and Dr T. Warn for helpful discussions
on nonlinear critical layers and to the three anonymous referees whose comments
led to several improvements in the paper. L.J.C. wishes to acknowledge the Zonta
International Foundation for support in the form in an Amelia Earhart Fellowship
during the time this research was being carried out.

Appendix A. The radiation condition
At the upper boundary of the computational domain, the disturbance is assumed to

be small enough that the nonlinear terms may be neglected and a radiation condition
derived. Near this boundary, the basic flow velocity may be treated as a constant,
ū ≈ 1 and ūzz ≈ 0. For steady linear monochromatic waves, the radiation condition
is then simply

φz ± imφ = 0, (A 1)

from the Taylor–Goldstein equation, (3.3), with m2 ≈ N 2/ū2 − δk2. For a time-
dependent wave packet, a radiation condition may be obtained by linearizing
equations (2.1) and (2.3) and taking a Fourier transform in x and then a Laplace
transform in t , as was done by Béland & Warn (1975) for the case of time-dependent
Rossby waves. The result is

ψ̃zz −
[

N2κ2

(s + iκū)2
+ δκ2

]
ψ̃ = 0, (A 2)

where ψ̃(κ, z, s) is the Fourier–Laplace transform of ψ(x, z, t). In order to be able to
obtain bounded solutions to this equation as z → ∞, we require that

ψ̃z + H (κ, s)ψ̃ = 0, (A 3)

where H (κ, s) is the square root of the expression in square brackets. On re-writing
this in the form,

H (κ, s) = δ1/2κ

[
(s + iκū)2 + N2/δ

(s + iκū)2

]1/2

, (A 4)

it is seen that the inverse Laplace transform of H is given by

h(κ, t) =
N2κ

δ1/2

∫ t

0

a

τ
J1(aτ ) dτ e−iκūt + δ1/2κ e−iκūt δ(t − 0), (A 5)

where J1 is the Bessel function of order 1, δ(t − 0) is the delta function and the
constant a = N 2κ/δ. Inverting the Laplace transform gives an equation for ψ̂(κ, z, t),



Nonlinear critical-layer evolution of a forced gravity wave packet 175

the Fourier transform of ψ(x, z, t), in terms of a convolution integral,

ψ̂z +

∫ t

0

ψ̂(κ, z, τ )h(t − τ ) dτ. (A 6)

This can be written as

ψ̂z + δ1/2κψ̂ = −δ1/2κ

∫ t

0

ψ̂(κ, z, τ )g(t − τ ) e−iκū(t−τ ) dτ, (A 7)

where

g(t) =

∫ t

0

a

η
J1(aη) dη. (A 8)

The radiation condition can be simplified if we make use of the fact that δ � 1; then
H can be approximated by

H (κ, s) =
Nκ

s + iκū
, (A 9)

so that

h(κ, t) = Nκ e−iκūt . (A 10)

Appendix B. Asymptotic analysis
Some aspects of the asymptotic analysis that are relevant to interpreting and

understanding the results of the numerical simulations are presented here. To examine
the evolution of the critical layer and the outer region, we first simplify equations
(2.1)–(2.3) by neglecting the viscous and heat conduction terms. Let us assume also
that the basic flow has constant shear; in the vicinity of the critical layer, this is a
valid approximation for the hyperbolic tangent mean profile used in the numerical
simulations. The configuration corresponding to that used in the standard run is
ū = z − zc. In the absence of the nonlinear, viscous and heat conduction terms,
equations (2.1)–(2.3) can be combined to give the single equation,(

∂

∂t
+ ū

∂

∂x

)2

∇2ψ + N 2ψxx = 0. (B 1)

We first note that for a steady disturbance in normal mode form, the amplitude
of the perturbation streamfunction is given by (3.3), which has linearly independent
solutions,

φA ∼ (z − zc)
1/2+iγ (B 2)

and

φB ∼ (z − zc)
1/2−iγ , (B 3)

with γ = (Ric − 1/4)1/2. The general solution is the linear combination,

φ = aφA + bφB, (B 4)

where a and b are constants. These solutions are valid in the outer region and are
discontinuous across the critical layer and, as a result, there is a phase change of −π
(Miles 1961).

As a starting point for the analysis, we re-examine the linear inviscid solution to the
time-dependent problem obtained by Booker & Bretherton (1967) with a mono-
chromatic forcing and then add the effects of nonlinearity and spatial-localization.
By taking a Laplace transform in time of equation (B 1), they found expressions for
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the perturbation in the outer region (equations 5.2, 5.6 and 6.1 in their paper) and in
the inner region (equation 5.9). To leading order, the perturbation in the outer region
takes the form

ψ ∼ eikx

{
h(z) + e−ikz̃t

(
hA(z)

t3/2+iγ
+

hB(z)

t3/2−iγ

)}
+ c.c., (B 5)

where

h(z) = az̃1/2Iiγ (kz̃) + bz̃1/2I−iγ (kz̃). (B 6)

The functions I±iγ (kz̃) are modified Bessel functions of complex order, hA(z) and
hB(z) are also expressions involving modified Bessel functions, γ = (Ric − 1/4)1/2, and
we have denoted (z − zc) by z̃. There are additional terms in the solution which
were not given explicitly by Booker & Bretherton; they result from the various
singularities that arise in the process of evaluating the inverse Laplace transform
(p. 529 of their article). With the forcing applied at the level z = z1, there are two
additional time-dependent terms that are of interest to us; they are proportional to
exp(−ik(z1 − zc)t) t3/2±iγ ). To leading order in z̃, the first term in (B 6) is equal to φA

and the second term to φB . As t → ∞, the steady solution (B 4) results. Booker &
Bretherton showed that the φA term corresponds to an upward-travelling wave and
the φB term to a downward-travelling wave. With the forcing applied below the
critical level, the first term is dominant, it is reduced by a factor of e−2πγ across the
critical layer and the horizontally averaged momentum flux is given by

F (z, t) =

{− γ

2k
|a|2 e2γ π, z < zc,

γ

2k
|a|2, z > zc.

(B 7)

Booker & Bretherton’s analysis can be generalized to the case in which the forcing
is of the form exp(ikx) exp(−µ2x2). The solution procedure follows that employed by
Campbell & Maslowe (1998) for the linear inviscid Rossby wave packet problem; it
involves taking a Fourier transform in x as well as a Laplace transform in time of
the linear equation (B 1) to give

(s + iκz̃)2(ψ̃zz − δκ2ψ̃) + N 2κ2ψ̃ = 0, (B 8)

where ψ̃(κ, z, s) is the Fourier–Laplace transform of ψ(x, z, t). With this forcing
function, most of the contribution to the solution comes from a small neighbourhood
of wavenumbers κ around the central wavenumber κ = k and we can take advantage
of that to obtain a solution in powers of (κ − k). After inverting the transforms, a
solution in powers of µ is obtained. To leading order, the solution is of the form
ψ ∼ ψ (0)(x, z, t) +O(µ2). It would be complicated to obtain the exact expression for
the O(µ2) term; however, for the present discussion, it suffices to know the form of
the leading-order term ψ (0)(x, z, t). This would necessarily take the form of Booker &
Bretherton’s monochromatic solution multiplied by the factor exp(−µ2x2), i.e.

ψ (0) ∼ exp(−µ2x2) exp(ikx)

{
h(z) + exp(−ikz̃t)

(
hA(z)

t3/2+iγ
+

hB(z)

t3/2−iγ

)}
+ c.c. (B 9)

Thus, to leading order, the qualitative behaviour of the solution is not significantly
different from that obtained with the monochromatic forcing. This was seen in the
numerical simulations; when ε = 0, the spatial-localization of the forcing does not
affect the qualitative behaviour of the solution. Since it is at this order that the
discontinuity in the solution appears, it follows that the phase change is still −π, as
in the monochromatic case. The appropriate scaled variables in this linear problem
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are the slow variables µx and µt and the critical-layer variable µ−1z̃. The linear wave
packet critical-layer thickness is µ−1.

If ε is non-zero in the governing equations, then the effects of nonlinearity must
be taken into account. Assuming that ε � 1, then the solution can be expressed in
powers of ε, at least at early time, and the expression for ψ (0) given in (B 9) represents
the leading-order term in the series. We can write

ψ ∼ ψ (0) + εψ (1) + O(µ2). (B 10)

When this is substituted into the nonlinear inviscid equations, along with a similar
expression for the perturbation density, it is found that ψ (1) must contain a term pro-
portional to exp(−2µ2x2), corresponding to the low wavenumbers, and a term propor-
tional to exp(2ikx)(exp(−2µ2x2)), corresponding to the higher wavenumbers. These
two terms correspond to the quantities shown in figures 8(a) and 8(c) respectively.

At early time, the momentum flux F̂ (κ, z, t) for each wavenumber κ takes the form
(B 7), with k replaced by κ and with a a function of κ instead of a constant. The total
momentum flux F (z, t) is the integral of F̂ (κ, z, t) over the range of wavenumbers κ .
Now the evolution of the mean flow, in the absence of viscosity, is governed by

∂ū0

∂t
= ε2 ∂F

∂z
, (B 11)

which gives, on integrating with respect to z and t ,

ψ̄0(z, t) = −ε2

∫ t

0

F (z, τ ) dτ, (B 12)

i.e. the wave-induced mean streamfunction is proportional to the time-integrated
vertical momentum flux. At early time, F is independent of t and so the mean
streamfunction increases like t in the outer region.

The solution (B 10) is valid in the regime where t <O(ε−2/3). To examine the long-
time (fully nonlinear) evolution of the disturbance in the outer region using multiple
scaling, we would have to define a slow time scale T = ε2/3t , as well as a slow spatial
scale X =µx, and obtain a late-time solution in terms of these variables. The question
then arises as to the relative magnitude of the two small parameters ε and µ. The
simplest balance would be that in which the widths of the two critical layers (the
linear wave packet critical layer and the nonlinear critical layer) are assumed to
be the same, i.e. the balance ε2/3 =µ. The governing equations written in terms of
the slow variables T = ε2/3t and X = ε2/3x yield a series of linear equations that can
be solved to obtain the form of the late-time solution. This solution is then matched
for T → 0 with the early-time solution.

The solution procedure is analogous to that of Brown & Stewartson (1982), the
main difference being that, with the localized forcing, each equation would contain
additional terms involving derivatives with respect to the slow scale X, i.e. each
derivative with respect to T would be replaced by the operator (∂/∂T + ū(∂/∂X)). A
consequence of this is that terms in the monochromatic solution that are proportional
to exp(−ik(z − zc)t) and exp(−ik(z1 − zc)t) would be proportional to

exp(−(X − (z − zc)T )2) exp(ik(x − (z − zc)t)) (B 13)

and

exp(−(X − (z1 − zc)T )2) exp(ik(x − (z1 − zc)t)) (B 14)
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instead. These expressions describe wave packets propagating outwards with phase
speeds determined by the basic flow velocity in the interior of the flow, ū(z) = z − zc,
and at the forced boundary, ū(z1) = z1 − zc. The part of the disturbance given by
(B 13) propagates in the direction of positive/negative x above/below the critical
level and has zero phase speed at the critical level. However, the phase speed of
the part given by (B 14) does not depend on height and is thus negative even at the
critical level. Finally, we note that these terms give rise to low-wavenumber terms that
are proportional to exp(−(X − (z − zc)T )2) and exp(−(X − (z1 − zc)T )2). The results
of the numerical simulations (figures 2, 7, 8 and 9) show that, in the critical layer and
below, the disturbance propagates outwards and in the direction of negative x.
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